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Introduction: WSD and its limitations

Our task: We aim at improving multi-lingual Word Sense Disambiguation
Methods: Deep neural networks (DNNs) with cross-lingual language models
Rationale:

Recent years: a great improvement has been achieved with the use of DNNs.
The lack of large-scale sense annotated corpora required by modern neural
models for low-resourced languages: still an open problem.
The large number of categories is a serious limitation, because of the bottleneck
of sense annotation sparseness.
Constructing a large sense annotated corpus is a very laborious task, so this
problem affects NLP for most world languages.
The models trained on large WSD resources (i.e. SemCors and wordnet-based
corpora) have to cope with a huge number of senses that rarely occurr in texts.
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Introduction: The light at the end of the tunnel

Solutions:
1. The usage of knowledge bases facilitates WSD algorithm through propagating

information within a semantic network (hybrid models).
2. The use of pre-trained language agnostic models allows to train on existing

WSD resources and apply it to a new language context and partially solves data
scarcity issue.

The problem: a limited capacity of deep neural networks and negative transfer
phenomenon.
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Introduction: Our contribution

1. Main aim: Enhance existing hybrid WSD models with data augmentation
technique

The models utilize both the relational structure and text utterances.
Question#1: how to transfer relational structure from language to language?
Question#2: does the Polish sense inventory help in multilingual word sense
disambiguation?

2. Things done: A slight yet effective modification of the EWISER[11] model
Data augmentation by transfering internal wordnet structure
Data augmentation by transfering sense usage examples and glosses
Extended the evaluation of EWISER model to more languages using XL-WSD[65]
framework.
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Related work

Supervised models
Cross-lingual models based on multilingual transformers
(MULAN [7], SensEmBERT[74], . . . )

structural properties of lexico-semantic networks used to be ignored in neural architectures

Hybrid supervised models enhanced with wordnet data and structure
(EWISER [12], CONSEC [8], . . . )

utilising textual descriptions of senses together with their structural properties
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Related work

Benchmarks
”Standard” monolingual framework for English language [71]
Multilingual benchmark from Semeval competitions
(English, Spanish, French, German and Italian)
XL-WSD [65]: a multilingual benchmark built on wordnet-based inventories (18
languages)

built on the basis of Open Multilingual WordNet data and BabelNet resources
a platform to evaluate zero-shot WSD methods and crosslingual transfer
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Hybrid Approaches: Models

EWISER:
a supervised hybrid architecture utilising sense annotated corpora and knowledge
base structure simultaneously,
a transformer architecture with additional sense discrimination layer and structured
logit mechanism injecting structural information into model during training,
a baseline architecture for us.

The KEY idea:
utilise existing wordnet links between senses to reinforce training procedure and
incorporate logit scores of neighboring senses into scoring function of word’s
candidate meanings
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Hybrid Approaches: Models
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Figure: The architecture of EWISER
model [11] from our perspective.
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Figure: Wordnet structural properties as
adjacency matrix. We aim at extending
the matrix using non-English wordnets.
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Benchmarking: XL-WSD Framework

Language Type #Instances

en SemEval 8 062
bg WN-based 9 968
ca WN-based 1 947
da WN-based 4 400
de SemEval 862
es SemEval 1 851
et WN-based 1 999
eu WN-based 1 580
fr SemEval 1 160
gl WN-based 2 561
hr WN-based 6 333
hu WN-based 4 428
nl WN-based 4 400
sl WN-based 2 032
zh WN-based 9 568

Table: Language-specific test sets, their type and size as reported in [65] publication. SemEval
datasets usually are easier to disambiguate when compared against WN-based datasets.
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Hybrid Approaches: Polish data

Polish WordNet (plWordNet) is heavily inter-linked with Princeton WordNet [73].
200k interlingual relation instances,
inter-lingual synonymy, hyponymy and hypernymy were the most prominent.

Link type Count

i-hyponyms 181 029
i-hypernyms 181 032
i-synonyms 93 654
Total 455 715

Table: Number of interlingual connections between plWordNet-3.2 and Princeton WordNet by
category.
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Hybrid approach: Augmenting PWN structure

Consider two pairs of counterpart synsets from plWN and PWN:
splW N

1 ↔ I-rel sP W N
1 ,

splW N
2 ↔ I-rel sP W N

2 ,
where “I-rel” signifies an inter-lingual relationship. Each time when there exists a short
path between the two Polish synsets in plWN, we add a new link to PWN:

sP W N
1 ↔ sP W N

2

We assumed that for synonymous counterparts the distance should not exceed 2, while
for homonymous counterparts the maximum path length was set to 1.
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Hybrid approach: Augmenting PWN structure
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Figure: Structure enhancement procedure: i) find the paths between close synsets that are
already mapped onto PWN structure ii) insert a link between senses on PWN side. The result:
an updated adjacency matrix for EWISER model.
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Hybrid approach: Augmenting PWN structure

Let’s talk about separate sets:
1. Ihyp of all plWN synsets that have their I-hypernyms or I-hyponyms on the PWN

side and
2. Isyn of all plWN synsets that have their I-synonyms in PWN.
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Hybrid approach: Augmenting PWN structure

1. I-synonymy case
take the original plWN adjacency matrix A = {aij},
produce S = A2 (i.e. the matrix product of 2 copies of A),

its elements {sij} are indexed by synset identifiers i, j,
they represent the number of random walks of length 2 on the plWN graph [41],

calculate S′ = {sij}, set non-zero elements of the matrix to 1,
add A + (S′ − I) = M = {mij}

we get a matrix with new adjacency links (representing the distance of 2 or less steps
in the original graph A),

Out of the matrix M we construct the new matrix E with picking up only those
synsets that are in the set Isyn

i.e. E = {mij}i,j∈Isyn .
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Hybrid approach: Augmenting PWN structure

2. I-hyponymy/I-hypernymy case
take the original plWN adjacency matrix A = {aij},
filter it leaving only the synsets from the set Ihyp,
i.e. H = {aij}i,j∈Ihyp .
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Hybrid approach: Augmenting PWN data

Taking into account all relationships obtainable from matrices H and E we
finally land with the set of new links to be added to PWN.
Nearly 146,000 Polish synsets are described by a gloss and/or by (a) usage
example(s). These samples were used to extend EWISER’s training data.
To obtain their textual descriptions we used interlingual links from plWordNet
3.2 including interlingual synonymy, hyponymy and hypernymy.
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Hybrid approach: Augmenting textual data - a note

In XL-WSD the authors used machine translated PWN glosses and usage
examples and found no significant improvement over language-specific models.
In contrast to their approach, we used Polish glosses and native natural
language examples avoiding translation disadvantages.
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Hybrid approach: Bilingual Training vs Negative Transfer

Negative transfer: using source domain data undesirably reduces the
learning performance in the target domain (limited model capacity).
We believe multilingual downstream task fine-tuning might be beneficial for tasks
such as WSD due to pre-training task (parallel corpora in XLM-R).
However, for tasks such as POS tagging or NER recognition Negative Transfer
issue (also called Negative Interference) was observed [80] in multilingual transfer.
Our work is one of the first attempts to investigate Negative Transfer
phenomenon in WSD task.
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Hybrid approach: Training and testing

All models were trained on
Princeton WordNet glosses and usage examples,
SemCor corpus.

The models were tested on SemEval tasks and test data from XL-WSD (glosses and
usage examples from several wordnets).
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Hybrid approach: Experimental setting

Baseline#1: a zero-shot architecture proposed in XL-WSD framework with
XLMR-Large model.
Baseline#1 We re-train the EWISER architecture with XLMR-Large model as
the underlying context encoder (comparability).
Model#1 Structure-only augmentation for EWISER model.
Model#2 Joint augmentation of structure and textual data (bilingual dataset).
Hyperparameter tuning: finetuned on SemEval’s 2015 validation dataset as it
was proposed in the literature, early stopping, the experiments repeated 5 times.
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Results
Language Baselines EWISER-augmented
ISO EWISER CONSEC XLM-R +PLWN +PLWN

639-1 [e] [c] [x ] (Es) (Es+Ts)

en+ 78,9 83.4 76.3 79.9 79.6
bg 74,2 — 72.0 74.7 75.4
ca 53,6 — 50.0 54.2 55.2
da 82,6 — 80.6 82.8 83.3
de+ 83,1 84.2 83.2 83.1 82.9
es+ 77,0 77.4 75.8 77.4 78.2
et+ 71,1 69.8 66.1 70.9 71.5
eu 50,2 — 47.2 50.5 50.8
fr+ 83,8 84.4 83.9 83.9 84.7
gl 67,7 — 66.3 66.4 67.4
hr 74,1 — 72.3 74.2 74.3
hu 73,7 — 67.6 73.6 73.7
nl+ 63,2 63.3 59.2 63.5 64.1
sl 66,6 — 68.4 68.0 67.5
zh 56,1 — 51.6 56.3 56.5

mean+ 76.1 77.0 74.1 76.5 76.8
mean 70.3 — 68.0 70.6 71.0

median+ 77.9 80.4 76.1 78.5 [c] (=) 78.6 [c] (=)

median 73.6 — 68.4 73.6 [e] ∗ (↑)
[x] ∗∗ (↑) 73.7 [e] ∗∗ (↑)

[x] ∗∗∗ (↑)
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Results

In tests on 15 languages our technique turned out to be successful in beating the
XL-WSD and the initial EWISER model and comparable to some extent with the
CONSEC1 model.

1The evaluation of CONSEC model was limited to the results provided by the authors in [8]. At the time of
publication, the training procedure was not fully reproducible and the codebase was incompatible with XL-WSD
sense indices.
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Results

We compared average F1 performances using U-Mann-Whitney paired test
(separately for CONSEC and for XL-WSD with EWISER).
p-value correction for false discovery ratio – Benjamini-Hochberg procedure [10].
Our two models performed better on average than XL-WSD (XLMR-L) and
EWISER baseline models (for 15 languages) and not worse than CONSEC model
(for 6 languages).
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Conclusions & Future Work

We proved that augmenting English training data sets with glosses and examples
from other than English wordnets can lead to the improvement of a multilingual
WSD algorithm.
We plan to investigate new ways of enriching Princeton WordNet structure with
relation instances derivable from Polish WordNet network.
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[60] Maciej Ogrodniczuk and  Lukasz Kobyliński, editors. Proceedings of the PolEval 2020 Workshop, Warsaw,
Poland, 2020. Institute of Computer Science, Polish Academy of Sciences.

[61] Dongsuk Oh, Sunjae Kwon, Kyungsun Kim, and Youngjoong Ko. Word sense disambiguation based on
word similarity calculation using word vector representation from a knowledge-based graph. In Proceedings
of the 27th International Conference on Computational Linguistics, pages 2704–2714, Santa Fe, New
Mexico, USA, August 2018. Association for Computational Linguistics.

[62] Heili Orav, Christiane Fellbaum, and Piek Vossen, editors. Proceedings of the 7th International WordNet
Conference (GWC 2014), Tartu, Estonia, 2014. University of Tartu.

[63] Martha Palmer, Christiane Fellbaum, Scott Cotton, Lauren Delfs, and Hoa Trang Dang. English tasks:
All-words and verb lexical sample. In Proceedings of SENSEVAL-2 Second International Workshop on
Evaluating Word Sense Disambiguation Systems, pages 21–24, Toulouse, France, July 2001. Association
for Computational Linguistics.

[64] Tommaso Pasini and Roberto Navigli. Train-O-Matic: Large-scale supervised word sense disambiguation in
multiple languages without manual training data. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 78–88, Copenhagen, Denmark, September 2017.
Association for Computational Linguistics.

Janz and Maziarz (Wroclaw University of Science and Technology) 25 / 25



Bibliografia XII

[65] Tommaso Pasini, Alessandro Raganato, and Roberto Navigli. Xl-wsd: An extra-large and cross-lingual
evaluation framework for word sense disambiguation. In Proceedings of the AAAI Conference on Artificial
Intelligence. AAAI Press, 2021.

[66] Adam Pease. Ontology - A Practical Guide. Articulate Software Press, 2011.
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