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I. Introduction
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MEANING• semantics 

• meaning 

• semantic relations 

• taxonomies, ontologies etc.

Semantics
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• computational semantics 

• meaning representations  

• vector space models 

• embeddings (word2vec, GLOVE…) 

• language models (BERT, GPT-3…)

Natural Language Processing
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??????
• explainable AI  

• interpretable models 

• BlackboxNLP (Alishahi et al. 2019) 

• probing framework

Interpretability
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II. Background and Motivation
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Semantic similarity
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• semantic similarity encompasses a variety of lexico-semantic and topical 

relations 

• distributional semantics literature often underspecifies  

what kind of similarity is being modeled (Kacmajor and Kelleher, 2019) 

Two key dimensions of semantic relationships 

• taxonomic 

• non-taxonomic 



Types of semantic relatedness
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Figure 1.  Subsets of semantic relatedness. (Image originally published by Kacmajor and 

Kelleher (2019) as Figure 1, licensed under CC BY 4.0.)
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Conflation of semantic relationships
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• in the distributional semantics literature taxonomic and thematic 
similarity is often conflated (Kacmajor and Kelleher, 2019) 

• the word similarity most often refers to taxonomic similarity 

• this is usually not explicitly stated 

• an important distinction; differentiating could improve statistical 

language models 

• taxonomic relations indicate replacement 

• thematic relations help in predicting the next word in a sequence 



Linguistic resources
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• different language resources reflect different semantic relationships 

Knowledge-Engineered Resources 

• thesauri, knowledge bases, ontologies, taxonomies, semantic networks 

• explicitly encode and reflect taxonomic relations 

Natural Language Corpora 

• only provide linguistic context and word co-occurrence information 

• encode and reflect thematic relations 

• if a language model is trained on just one type of resource, arguably it 

cannot accurately encode the full spectrum of semantic relatedness



Research questions
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• How much taxonomic information is encoded in thematic embeddings? 

• How much taxonomic information is encoded in taxonomic embeddings? 

• Are there differences in how this information is encoded vector space? 

Approach: 

• apply the probing framework 

• develop taxonomic probing dataset based on English WordNet 

• examine differences in structural properties of taxonomic and thematic 

embedding space



III. Probing Classifiers
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Probing classifiers
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• in essence a linguistic classification task 

• uses “vanilla” language embeddings as input to ML classifier (probe) 

• probe predicts some linguistic property of interest 

• e.g. sentence length, verb tense, subject number, parse tree depth etc. 

• particularly interesting to examine linguistic properties which the models 

are not explicitly trained to encode, thus revealing emergent structures 

• intuition: if the probe performs well, the relevant knowledge must be 

encoded in the representation



Probing at a glance
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1. Choose a linguistic property of interest, e.g. verb tense

2. Choose or design an appropriate dataset 

3. Choose a word/sentence representation, e.g. BERT 

4. Choose a probing classifier (i.e. the probe), e.g. MLP

5. Train the probe on the embeddings as input 

6. Evaluate the probe’s performance on the task



Some challenges
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How to determine if the probe performs well? 

•probe interpretations are inherently comparative 

•goal: move towards “intrinsic” probe evaluations 

Focus on vector dimensions—what about the norm? 

•norm is rarely studied and often overlooked (e.g. cosine similarity normalises vectors) 

•goal: exploration of the role of the norm in encoding information 



Information containers
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Embeddings = Vectors 

• vectors = direction + magnitude 

• direction (coordinates) defined by dimension values 

• magnitude (length) defined by vector norm 

• two information containers 

• vector dimensions 

• vector norm

10 5 -2 4 -8 1 2 5 37

            vector    norm

Figure 2. An illustrative example of a vector space model.  



Probing with Noise
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1. Choose a linguistic property of interest, e.g. verb tense

2. Choose or design an appropriate dataset 

3. Choose a word/sentence representation, e.g. BERT 

4. Choose a probing classifier (i.e. the probe), e.g. MLP

5. Train the probe on the embeddings as input 

6. Evaluate the probe’s performance on the task



Probing with Noise
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1. Choose a linguistic property of interest, e.g. verb tense

2. Choose or design an appropriate dataset 

3. Choose a word/sentence representation, e.g. BERT 

4. Choose a probing classifier (i.e. the probe), e.g. MLP

5. Train the probe on the embeddings as input 

6. Evaluate the probe’s performance on the task

7. Introduce systematic noise in the embedding 

8. Repeat training, evaluate and compare 

(vanilla baseline)



IV. Taxonomic Probing Dataset
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Motivation

19

• a probing task needs to ask a simple, non-ambiguous question 

• hypernym detection/discovery and cloze tasks not ideally suited to our framework 

• require a simpler task that more directly teases out the hypernym-hyponym 

relationship 

• new taxonomic probing task: predicting which word in a pair is the hypernym, and 

which is the hyponym 

• derived from WordNet 

• each pair shares an immediate hypernym-hyponym relationship  

• a word in a pair can only be a direct hyponym or hypernym of the other



Dataset construction

20

• dataset pruning: only contains the intersection of vocabularies of our encoders  

• only includes word pairs that have representations in all our embedding models 

• problem definition: positional classification task 

• concatenate word vectors in the pair 

• Q: given a pair of words, is the first one the hyponym (0) or hypernym (1) of the other? 

• balancing: duplicate all instances and swap the positions in the pair 

• Final set: 493,494 word pairs, 50,000 in test set, remainder in training set 

• 0, north, direction 
• 1, direction, north 
• 0, hurt, upset 
• 1, upset, hurt 



V. Probing Experiments
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Models
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Thematic Embeddings 

• SGNS 
• genism word2vec implementation 

• Google News dataset 

• 300-dimensional word embedding 

• off-the-shelf 

• GloVe 
• common crawl (2.2M tokens), cased 

• 300-dimensional word embedding 

• off-the-shelf

Taxonomic Embeddings 

• SGNS 
• taxonomic WordNet random walk embeddings 

(Klubička et al., 2019) 

• 300-dimensional word embedding 

• off-the-shelf 

• GloVe 
• trained on same taxonomic pseudo-corpora as 

SGNS above (Klubička et al. 2020) 

• 300-dimensional word embedding 

• final instances in the dataset contain 2 concatenated vectors = 600 dimensions



Evaluation
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• probe model: Multi-Layered Perceptron (MLP) 

• evaluation metric: AUC_ROC score (0.5 = model does not discriminate) 

• train 50 times and report average scores 

Questions: 
• How do vanilla embeddings perform on the task ? 

• What is the effect of ablated norm vs ablated dimensions ?



Results SGNS – THEM vs TAX
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Table 1. Evaluation scores of the probing with noise experiments on taxonomic and thematic 

SGNS embeddings. Reporting AUC_ROC evaluation scores and the confidence interval (CI) of 

the average calculated over all training runs. 
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Results GloVe – THEM vs TAX
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Table 2. Evaluation scores of the probing with noise experiments on taxonomic and thematic 

GloVe embeddings. Reporting AUC_ROC evaluation scores and the confidence interval (CI) of 

the average calculated over all training runs. 



Results GloVe – THEM vs TAX
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Table 2. Evaluation scores of the probing with noise experiments on taxonomic and thematic 
GloVe embeddings. Reporting AUC_ROC evaluation scores and the confidence interval (CI) of 
the average calculated over all training runs.



Findings: vanilla embeddings
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• both taxonomic and thematic SGNS and GloVe  

encode some taxonomic information 

• taxonomic SGNS encodes significantly more taxonomic information than 

thematic SGNS 

• thematic GloVe encodes the most taxonomic information  

compared to other embeddings



Structural insights
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• the norm can carry linguistic information at the word level 

• different encoders utilise the norm to varying degrees  
• taxonomic GloVe encodes more taxonomic information in the norm than word2vec 

• thematic GloVe encodes no taxonomic information in its norm 

• taxonomic embeddings encode more taxonomic information in the norm than 

thematic embeddings to 
• the norm is used to supplement encoding of taxonomic information 

• the usage of the norm can be determined by the embedding training data, i.e. the 

underlying distribution, rather than the model architecture



VI. Additional Analyses
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Hypernym-hyponym norm lengths - SGNS
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Figure 3. Box plots depicting the median values of the L2 norm in the different sets of word vectors, separate for hyponyms and hypernyms. 

There is a marked difference observed between hyponym and hypernym norms in taxonomic GloVe and SGNS, but not in thematic. 



Hypernym-hyponym norm lengths - GloVE
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Figure 4. Box plots depicting the median values of the L2 norm in the different sets of word vectors, separate for hyponyms and hypernyms. 

There is a marked difference observed between hyponym and hypernym norms in taxonomic GloVe and SGNS, but not in thematic. 



Norm lengths observation
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• on average, the norm of hypernyms is longer than the norm of hyponyms 

• only in taxonomic embeddings 

• there is a mapping between the taxonomic hierarchy and distance from the origin 

• hypernyms (higher in taxonomy) are further away from the origin 
• hyponyms (lower in taxonomy) and are closer to the origin  



VII. Conclusion
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Recap
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• applied probing with noise to taxonomic and thematic SGNS and GloVe embeddings 

• designed new taxonomic probing task derived from WordNet 

• both taxonomic and thematic embeddings encode taxonomic information 
• taxonomic SGNS embeddings encode more 

• the probe is using the relationship between candidate words as a predictive feature 

• provide geometric insight into the vector space and role of the norm in encoding 

taxonomic information 

• GloVe encodes a lot of taxonomic information in the norm 

• taxonomic embeddings use the norm to supplement their encoding of taxonomic information 

• the usage of the norm can be determined by the embedding training data, i.e. the 

underlying distribution, rather than the model architecture 



www.adaptcentre.ie
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e-mail: filip.klubicka@adaptcentre.ie
twitter: @lemoncloak
github: https://github.com/GreenParachute
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Thank you for your attention!



Taxonomic relatedness
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• relationship based on a comparison of the concepts’ features 

• taxonomically related words/concepts share properties or functions 

• table vs. desk 



Non-taxonomic relatedness
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• related by virtue of co-occurrence in any sort of context  

(e.g. temporal, spatial, linguistic)

Thematic relations (Lin and Murphy, 2001)

• thematically related words/concepts perform  

complementary roles in a common event or theme

• this often implies having  

different features and functions  

which are complementary

• table vs. chair

• distributionally, thematic relations reflect high-probability co-occurrences



¿Por qué no los dos?
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• Kacmajor and Kelleher (2019) show that the same pair of concepts can be 

connected via both taxonomic and thematic relations



Paradigmatic vs. syntagmatic relationships
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• taxonomic & thematic ≈ paradigmatic & syntagmatic (De Saussure, 1916)

The Sun is shining.
Paradigmatic

• vertical
• relationship among linguistic elements that can substitute for each other in a given context

• Sun ⇄ Moon ⇄ stars ⇄ light

Syntagmatic

• horizontal
• relationship among linguistic elements that occur sequentially in a chain of speech/text

• The Sun ⇄ is shining

• substitution vs. positioning



The method’s supporting pillars
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a) systematic noise – helps ablate information 

b) random baselines – basis for relative intrinsic evaluation 

c) confidence intervals – inform inferences



A) Systematic noise
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• ablating a vector’s information containers individually 

• noise should not affect both containers 

• solution: random sampling + scaling 

• dimension container: random dimension values scaled to original norm 

• norm container: existing dimension values scaled to random norm 

• both containers can be affected by introducing both types of noise at the 

same time: this can act as a sense check



B) Random baselines
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• grounding the impact of vector modifications 

• problem: probe can learn class distributions  

• baselines: 

a) random prediction on test set 

b) train probe on randomly generated vectors



C) Confidence intervals
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Randomness in probing with noise 

• probe might contain a stochastic component 

• noising functions are highly stochastic 

• evaluation scores will vary when probe is retrained 

Solution 

• train model a multitude of times and report average score 

• 99% confidence interval provides statistical significance 

• confidence interval range used when comparing models



Dimension deletion experiments
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Table 3. Probing results on SGNS deletions and baselines. Reporting average AUC-ROC scores 

and confidence intervals (CI) of the average of all training runs
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Dimension deletion experiments

33

Table 4. Probing results on SGNS deletions and baselines. Reporting average AUC-ROC scores 

and confidence intervals (CI) of the average of all training runs



Dimension deletion experiments
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Table 4. Probing results on SGNS deletions and baselines. Reporting average AUC-ROC scores 

and confidence intervals (CI) of the average of all training runs



Deletion findings
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• larger drop in both del.ct. settings versus del.ea. settings 

• predicting a word's relationship to an “imaginary” other word is the more difficult task 

• in both cases performance significantly above random 

• probe learned some frequency distributions from the graph 

• reflects hypernym-hyponym imbalance inherent to WordNet 

• learning from two halved vectors is better than a single full representation 

• probe is inferring the relevant relationship between the candidate words


