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Introduction

Goal: recognise lexicalised MWEs in WordNet (which we will call MWLUs -
multi-word lexical units),
Procedure: combine rule-based and statistical approaches,
Improvement: a cross-encoder approach.
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Introduction

MWEs in PWN and in enWN (:= at least one space),
no proper names, no biological taxonomy and chemistry terms,
39,406 MWEs in total.
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Sample annotation: MWEs from WN

The vast majority of MWEs in the dataset were nouns:

nouns verbs adjectives adverbs
33713 4389 540 764
86% 11% 2% 1%

Table: POS statistics for the MWE dataset.

Nearly 1% of the total data set was randomly sampled,
387 MWEs were chosen

250 from our previous experiment Maziarz et al. (2022)
137 new MWEs (to balance the sample to get MWLU/non-MWLU ratio as in the
original data set)
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Sample annotation: Lexicality status

Multi-word lexical unit (MWLU) := MWE that was given the headword status in
any of our reference dictionaries.

they are treated as multi-word lexical units by lexicographers (native speakers of
English, whose lexical competence surpasses that of any native speaker of English).
243/387 MWLUs in our sample.

6 dictionaries were inquired
New Oxford Dictionary of English (NODE, British),
Merriam-Webster Collegiate (M-W, USA),
Collins Dictionary (CED, British),
New World Dictionary (N-W, USA),
Collins COBUILD (COBUILD),
Longman Dictionary of Contemporary English (Longman).

online versions (updated quite regularly in contrast to printed versions),
dictionaries for both American or British English speakers.
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Sample annotation: Lexicality status

Four of those dictionaries (NODE, M-W, N-W, CED) are so-called medium, or
desktop, dictionaries

intended to be used primarily by educated native speakers of English,
include most of the vocabulary that educated native speakers can find in texts
and which they may not know (that is why they reach for a dictionary), though they
do not use them on their own.

Two are so-called pedagogical dictionaries (COBUILD, Longman)
intended to be used primarily by advanced learners of English or non-native speakers
of English (Jackson, 2022; Cowie, 2009),
include vocabulary of high frequency (the active vocabulary of English native
speakers),
mainly for a non-English user,
a balanced selection of British and American items.
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ML approach: Cross-encoder

The task of distinguishing MWLUs from non-MWLU in WordNet:
In (Maziarz et al., 2022) we applied logistic regression to the task.
We use now a cross-encoder (Reimers and Gurevych, 2019).
The setu4993/smaller-LaBSE model (Feng et al., 2020)

smaller model — for relatively small manually annotated sample,
multilinguality — for future applications (especially for plWordNet).

We used default settings for model learning.
Four epochs were arbitrarily chosen.
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ML approach: Cross-encoder
Tokenizer and model inputs were truncated to 48 tokens.

Figure: Histogram of lengths of sample definitions (enriched with hypernyms) in terms of
LaBSE tokens. The 95th percentile for the empirical distribution equals 41, while the maximal
length is 81 tokens.
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ML approach: Cross-encoder

smaller-LaBSE cross-encoder

1. lemma 2. hypernym + definition

classifier

Figure: Cross-encoder for MWLU recognition in WordNet.
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ML approach: Cross-encoder

lemma hypernym, definition label
jest at mock, subject to laughter or ridicule 0
take back disown, take back what one has said 1

Table: Two examples from the sample passed to the cross-encoder. Zero means ‘non-lexicalised
multi-word expression’, while one stands for ‘multi-word lexical unit’.

Hypernymic lemmas are added to teach the model to discover semantic
compositionality of a MWE, cf. Bauer (2019).
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ML approach: Bootstrap cross-validation
Efron’s .632 bootstrap estimator (Efron, 1983; Jiang and Simon, 2007).
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Figure: Efron’s bootstrap cross-validation scheme (B = 100 iterations).
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ML approach: Bootstrap cross-validation

The confusion matrices were obtained from Efron’s .632 bootstrap rule:

Ni(j) = n × Pri(j) = n × [0.632 × Prtest
i (j) + 0.368 × Prsubst

i (j)] (1)

B = 100, the number of bootstrap
iterations,
n = 387, i.e. the whole sample size,
i (= 1, ..., B) — i-th confusion matrix,
j (= 1, 2, 3, 4) — j-th cell of the i-th
confusion matrix,

Pi(j) — the proportion of each cell
counts,
the superscript test — a testing data
(out-of-bag sample) confusion matrix,
the subscript subst — a training
sample confusion matrix (through
substitution).
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Results

real efficiency
LaBSE model non-MWLU MWLU P R F

prediction non-MWLU 89.3 52.3 .63−
∗ .62∗∗

∗∗ .62−
∗∗

MWLU 54.5 190.9 .78∗∗
∗∗ .78∗∗ .78∗∗

majority baseline non-MWLU MWLU P R F

prediction non-MWLU 0 0 — 0 —
MWLU 144.0 243.0 .63 1∗∗ .77

random baseline non-MWLU MWLU P R F

prediction non-MWLU 69.7 71.9 .49 .36 .41
MWLU 124.0 121.4 .50 .63 .55
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Results

Caption to the previous table. Confusion matrix and cross-encoder
(setu4993/smaller-LaBSE) classification results for the discrimination of multi-word
lexical units (“MWLUs”) and non-lexicalised MWEs (“non-MWLU”) in bootstrap
cross-validation. Differences between the model and a random/majority baseline are
statistically significant at *) < .025 or **) < .01 significance level. Comparisons with
the random baseline are presented in subscript, while differences from the majority
baseline are given in superscript. The presented values are averaged out over all
bootstrap iteration rounds. Please note that the significance level less than 0.01 was
obtained when none of the bootstrap trials (out of B = 100 samples) found a result
supporting the null hypothesis.
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Results

Bootstrap iteration
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Figure: Accuracy gain/loss on testing sets throughout four epochs and one hundred bootstrap
iterations.
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Conclusions

The smaller-LaBSE language model:
is better than the uniform distribution random baseline,
has beaten the majority class baseline

with regard to the precision of the ‘MWLU’ class
and the recall of the ‘non-MWLU’ class,
the F1 measures were indistinguishable.

has beaten our previous model (Maziarz et al., 2022):
F1 for the ‘MWLU’ class is much better (78% vs. 58%, p < 0.01),
the measure for the ‘non-MWLU’ class is not worse (62% vs. 61%, p = .31)
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Conclusions

Interestingly, the cross-encoder model was given no more than bare lemmas and
their synset definitions enriched only with hypernyms.
No corpus frequency (a feature important in MWE recognition) was provided.
We assume that the smaller-LaBSE cross-encoder (the black box par excellance)
relied on semantic discrepancies between a word combination and its semantic
description in the definition, that is, on semantic opacity/compositionality.
This assumption should be further verified in consecutive experiments in the
future.
The rationale for our experiment is pivoted on lexicographic descriptions taken
manually from dictionaries. A few words must be said to address possible
shortcomings of this approach.
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Conclusions
Operationalization of the definition of MWLUs has its own limitations:

Native-speaker dictionaries can include items because these items were included in
some dictionaries that had been published earlier and which were quite influential.
And these items are not lexical units, even though they are quite frequent in texts
but the users might expect them in a dictionary.
M-W and Oxford dictionaries are such influential dictionaries.
Unfortunately, this also works in the other direction: a MWLU that is not very
rare in texts may not be recorded in dictionaries because no previous dictionary
recorded it.
In contrast, editors of pedagogical dictionaries are not constrained by tradition
and one may believe that the items they include are genuine lexical items.
Clearly there is room for improvement both for wordnets and for “traditional”
dictionaries.
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