

Resolving Multiple Hyperonymy

Svetla Koeva and Dimitar Hristov Institute for Bulgarian Language Bulgarian Academy of Sciences

Introduction

WordNet

- A lexical semantic network that encodes human knowledge
- Nodes are the concepts, represented by sets of synonyms (synsets)
- Edges are the semantic relationships between concepts

Hyperonymy (and its inverse relation, hyponymy)

- Connects more general concepts to more specific ones
- Organises noun synsets in hierarchies
- The most abstract concept is at the root of the tree
- The most specific concepts are at the leaves of the tree

Introduction

Hyperonymy forms a cycle-free directed connected graph whose root is an abstraction that is a hyperonym of all other synsets.

Hyperonymy is an **asymmetric** and **transitive** is-a relation:

- A parrot is a bird.
- A cockatoo is a parrot.

Then:

• A cockatoo is a bird. (transitivity)

But not:

A bird is a parrot. (asymmetry)

Motivation

We want to use of semantic classes for nouns and their inheritance by hyponyms when encoding the syntagmatic combinations of verbs and nouns.

- Mapping Corpus Pattern Analysis (CPA) ontology to WordNet synsets
 - Adding 253 new semantic types to the 25 more generic WordNet semantic classes
 - Finding the highest-most synset (i.e., with no such hyperonyms) which represents a CPA type
 - Propagating the CPA type assignment to hyponyms
- Expectation
 - Each synset belongs to a specific CPA semantic type
- Discovery
 - Some sunsets were assigned multiple CPA classes due to multiple hyperonymy

Due to this, resolving the multiple hyperonymy is critical for this work.

Multiple hyperonymy

Multiple hyperonymy can be:

- Disjunctive (Exclusive)
 - albino is either animal or human
 - Connected to polysemy, should not exist in WordNet
- Conjunctive
 - spoon is both cutlery and container
 - often have a common hyperonym (different from {entity:1})
 - different type of semantic relations can be defined, with only one hyperonymy

Non-exclusive

- knife can be cutlery, weapon or both
- both a disjunctive and a conjunctive relations, should not exist in WordNet
- hatmaker "someone who makes and sells hats" with hyperonyms maker and merchant

Multiple hyperonymy

Our aim is to investigate and resolve multiple hyperonymy relations in WordNet by:

- defining new relations in place of some hyperonymy relations
- **deleting** hyperonymy relations (if appropriate)
- + **specifying** new hyperonymy relation where necessary

Data basis

Princeton WordNet 3.0 in XML encoding

Looking at all noun synsets with at least one non-instance hyperonymy relation

Noun synsets	Count
With hyperonyms	74,388
With instance hyperonyms	7,725
With no hyperonyms	1
Total	8 <mark>2,114</mark>

<mark>Data b</mark>asis

Noun synsets with multiple hyperonymy relations

Multiple hyperonymy synsets	Count
With 2 hyperonyms	1,387
With 3 hyperonyms	30
With 4 hyperonyms	3
With 5 hyperonyms	1
Total	1,421

Data preparation

Grouping helps define rough semantic classes, for each of which the multiple hyperonymy resolution follows a pattern

Grouped based on common hyperonyms in 2 sets of groups:

- Single all synsets with multiple hyperonyms that have a specific common hyperonym
- Double all synsets with multiple hyperonyms that have a specific pair of common hyperonyms

Data preparation

Grouping result:

- 1,814 single groups
 - 512 with 2 or more members
 - 66 with 5 or more members
- 1,305 double groups
 - 121 with 2 or more members
 - 40 with 3 or more members

Using large single (5+ members) and double (3+ members) as starting point for multiple hyperonymy resolution

Data preparation

Visualisation of the hyperonymy graphs of synset with multiple hyperonymy

- Aid for editors and reviewers
- Displaying all direct and indirect hyperonyms up to {entity:1}
- Visualisation of post-editing graphs with changes
 - Dotted lines where deleted
 - Dashed lines where changed or added
 - Solid line for no changes

Data preparation

Visualisation of the hyperonymy graphs of synset with multiple hyperonymy

- Aid for editors and reviewers
- Displaying all direct and indirect hyperonyms up to {entity:1}
- Visualisation of post-editing graphs with changes
 - Dotted lines where deleted
 - Dashed lines where changed or added
 - Solid line for no changes

Starting point (proof of concept):

- All large 40 double groups with 3+ members
- Some large single groups with 5+ members
- 150 synsets with multiple hyperonymy

Scope expansion:

- All double groups
- All single groups
- 1,421 synsets with multiple hyperonymy

Stage 1:

- 2 editors, working on non-overlapping parts of the initial scope
- No prescribed relations editors identify possible new relations
- Identified 9 new and 1 existing possible alternative relations

Stage 2:

- 2 editors, working on non-overlapping parts of the full scope
- Working with previously identified relations
- Cross-review of work for completeness and consistency
- Review of relation set, changed to 6 new and 3 existing in 3 groups

Process

Delete, add or change hyperonymy relation to one of the following relations:

- Property (new)
 - characteristic what distinguishes an entity
 - origin what is the origin of an entity
 - form what is the form of existence of an entity
- Application (new)
 - function what is the function of an entity
 - purpose what is the purpose of an entity
 - **use** what is an entity used for
- Composition (existing)
 - member, part, portion what is the composition of an entity

Examples

{chemical element:1, element:6} – 18 members in single group

- + {noble gas:1, inert gas:1, argonon:1} 6 members in double group
- + {halogen:1} 5 members in double group
- + {gas:7} 6 members in double group
- + 3 members from other double groups

Examples

{chemical element:1, element:6} / {noble gas:1, inert gas:1, argonon:1} - 6 members

 remove the hyperonymy relation of group members to {chemical element:1, element:6}, as it is already a hyperonym of {noble gas:1, inert gas:1, argonon:1}

Examples

{chemical element:1, element:6} / {halogen:1} - 5 members

- change the hyperonymy relation of {halogen:1} from {group:1, grouping:1} to {chemical element:1, element:6}
- remove the hyperonymy relation of group members to {chemical element:1, element:6} as it is a hyperonym of {halogen:1}

Examples

{chemical element:1, element:6} / {gas:7} - 6 members

- change the hyperonymy relation of group members to {gas:7} to the relation type form
- {chlorine:1, Cl:2, atomic number 17:1} and {fluorine:1, F:6, atomic number 9:1} are also members of the previous group - the rest of their multiple hyperonymy is already resolved

Examples

{chemical element:1, element:6} - other 3 members

- {germanium:1, Ge:3, atomic number 32:1} with hyperonyms:
 - {chemical element:1, element:6} and
 - {semiconductor:2, semiconducting material:1}, proposed change to function
- {*silicon:1,* Si:2, *atomic number 14:1*} with hyperonyms:
 - {chemical element:1, element:6} and
 - {semiconductor:2, semiconducting material:1}, proposed change to function
- {selenium:1, Se:1, atomic number 34:1} with hyperonyms:
 - {chemical element:1, element:6} and
 - {antioxidant:1}, proposed change to function

Examples

eng-30-00002137-n abstraction:1, abstract entity:1

eng-30-00001740-n entity:1

eng-30-00001930-n

Before and after resolution of multiple hyperonymy for synset {chlorine:1, Cl:2, atomic number 17:1}

Examples

Results

Action on synsets with multiple hyperonymy	Count
Remove relation	66
Change relation to characteristic	388
Change relation to origin	19
Change relation to form	122
Change relation to function	431
Change relation to purpose	117
Change relation to use	123
Change relation to member	13
Change relation to part	76
Change relation to portion	23
Add new hyperonymy relation	76
Total	1,4 <mark>54</mark>

Global WordNet Conference, Donostia, 23-27 January 2023

Action on other synsets	Count
Remove relation	11
Change relation type	1
Add new relation	14
Total	26

Total number of actions: 1,480

Results

- Noun graph defined by hyperonymy relations is now a tree
 - There is a single path from any synset to the root {*entity:1*}
- New relations are asymmetric and intransitive (inverse also defined)
- Observed dependency:

If the semantic primitives of multiple hyperonyms are different, a true hyperonym is the synset where the semantic primitive is the same with respect to the subordinate concept.

Conclusion

- Multiple hyperonymy represents several semantic relations which are only partially shown within WordNet
- Relations such as origin, form, function, etc. bear additional semantics and where they exist, they can be defined, regardless of whether multiple hyperonymy occurs
- Multiple hyperonymy resolution is necessary for cases which require proper inheritance

Future work

- The resulting tree structure is appropriate for semantic type classification of noun synsets using inheritance (CPA types mapping)
- This classification will further help the assignment of detailed PDEV sentence patterns to WordNet verb synsets, in turn expanding the verb-noun semantic relations
- A few cases of disjunctive multiple hyperonymy indicate a need for evaluation of possible polysemy in WordNet
- In the meantime, further evaluation and adjustment is required for the resulting WordNet relations and tree structure

Thank you!

Svetla Koeva

Institute for Bulgarian Language Bulgarian Academy of Sciences

svetla@dcl.bas.bg

Dimitar Hristov

Institute for Bulgarian Language Bulgarian Academy of Sciences

d.hristov@dcl.bas.bg

The study has been carried out as part of the project **Enriching the Semantic Network WordNet with Conceptual Frames** funded by the National Science Fund of the Ministry of Education and Science of the Republic of Bulgaria under the Fundamental Scientific Research Programme (Grant Agreement No. KP-06-50/1 of 30.11.2020).